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Chapter 3: Nuclear and Atomic Data

Introduction

In order to transport neutrons and photons TART95 requires nuclear and atomic data to
describe the interaction of neutrons with nuclei and photons with atoms. It also need data
to describe neutron induced photon production, which can also be transported.

Sources of Data

The standard source of data used by TART95 is the Livermore ENDL [9], neutron
interaction and neutron induced photon production data, and EGDL, photon interaction
data. Additional, non-standard neutron interaction data based on ENDF/B-VI is also
available. The ENDF/B-VI photon interaction library is based on the Livermore EGDL
data, so that it isn't necessary to have an alternative library.

The ENDL neutron interaction data is at room temperature (293 Kelvin) and is processed
into the form used by TART95, i.e., 175 group constants. See, the appendix for a table of
the TART95 neutron 175 energy group boundaries. Additional, non-standard, neutron
interaction data files are also available, based on data from other libraries, as well as at
other temperatures; using the SIGMA1 method of Doppler broadening [31, 36] data can
be prepared at any temperature. One available alternative library is based on what we feel
is an optimum combination of ENDF/B-VI cross sections (which are good at lower
energies) and ENDL kinematics (which are good at higher energies). In order to create
libraries at other temperatures, rather than processing an entire data library (cross sections,
angular distribution, energy distributions, etc.) for most applications it is adequate to
Doppler broaden only the total, elastic, capture and fission cross sections using program
GROUPIE [31] and then use program GROUPIE [31] to create multi-band parameters for
direct use in TART95.

The EGDL photon interaction data is the original source of the ENDF/B-VI library [14].
For use in TART95 the EGDL cross sections are processed into a fixed energy grid of 176
energy points between 100 eV and 30 MeV. The same fixed energy grid is used for all
materials. This 176 energy point grid is dense enough to allow linear interpolation between
adjacent tabulated data points. See the appendix for a table of the TART95 photon 176
energy points. The use of a fixed energy grid for all materials and linear interpolation
significantly reduces running time and yet allows a representation of the data to well
within its uncertainty.

The ENDL neutron induced photon production data is currently the only source of this
type of data available to TART95. In TART95 neutron induced photon production is
completely uncorrelated to the individual neutron interactions that occur. This may sound
strange at first, but as actually used it significantly reduces running time and better
simulates what is actually measured and reported in neutron induced photon production
measurements. For example, in such measurements what is measured and best known is
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the total production of photons from all competing processes, not the production from
each and every process.

WARNING - The ENDL neutron interaction and neutron induced photon production
cross sections have been designed to be completely consistent when used in combination,
as have other neutron data libraries. But the user MUST be aware that to perform
consistent coupled neutron-photon transport calculations if you use any alternative data
sets you MUST consistently use both neutron interaction and photon production data
from the same alternative set of data. For example, for coupled neutron-photon
calculations you SHOULD NOT use ENDF/B-VI neutron interaction data and ENDL
neutron induced photon production data. If you are only performing neutron (not photon)
transport calculations you can use any of the available neutron data files.

Use of Data by TART95

TART95 uses continuous energy neutrons and photons. However, to represent the
neutron cross sections it uses multigroup cross sections. For example, when tracking
neutrons if the neutron energy is within the energy limits of a given energy group the cross
sections for that group are used to define how far the neutron will transport between
collisions (based on the total cross section), as well as what type of collision occurred
(based on the individual cross sections for elastic, capture, fission, etc.). When the
collision occurs starting from the original neutron energy the neutron can be scattered or
transferred to any other energy based on the kinematics of the type of collision. Even
though the neutron cross sections are in multi-group form, the scatter or transfer of
neutrons between energies is done on a continuos energy basis. Neutrons are not
constrained in any way to have discrete energies based on the energies of the multigroup
cross sections; neutron energies are continuous and can have any value between the
maximum and minimum allowed energies.

Expected Energy Deposition

In order to allow TART95 to perform expectation, as well as analog, calculations.
TART95 uses expected energy depositions which have been pre-calculated from the
ENDL and EGDL data [9, 14] and is included in the TART95 neutron interaction data file
TARTND and photon interaction file GAMDAT. Based on the kinematics of each process
expected energy deposition is pre-calculated for both neutron and photon interactions.
Energy deposition is included separately for each process, e.g., there are separate energy
deposition tables for elastic, inelastic, fission, etc. The details of how energy deposition is
calculated are included in the documentation for the processing system OMEGA [8] and
will not be discussed in detail here. Here we will only include sufficient detail to allow
users to understand the physical significance of the data used.

In order to allow TART95 to track either only neutrons or neutrons and photons the
TART95 data file for neutron interactions, TARTND, contains two sets of expected
energy deposition.
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For use when only tracking neutrons, one set of deposition is defined as the energy of all
secondary particles EXCEPT neutrons. This includes the energy of all photons, charged
particles, recoil nucleus, fission products, etc.

For use when tracking neutrons and photons, one set of deposition is defined as the energy
of all secondary particles EXCEPT neutrons and photons. This includes the energy of all
charged particles, recoil nucleus, fission products, etc.

The file for photon interactions, GAMDAT, has only one set of energy deposition for each
process. For coherent scattering there is no energy loss and therefore the deposition is
zero. For incoherent scattering deposition is based on the integral of the product of the
Klein-Nishina formula and the incoherent scattering function. For pair production the
energy deposition is defined as the incident energy of the photon minus 1.022 MeV (the
rest mass equivalent of the two 0.511 MeV photons produced when the positron
annihilates). For photoelectric the table in GAMDAT is the incident photon energy minus
the energy of all fluorescence x-rays. The default option for TART95 is not to track
fluorescence x-rays, so that if the track fluorescence option (sentl 25) is not used
fluorescence x-rays will not be tracked and internally TART95 redefines the photoelectric
energy deposit to be the energy of the incident photon.

Based on the TART95 input options specified for each problem that affect expected
energy deposition, e.g., track or don't track photons, track or don't track fluorescence x-
rays, TART95 selects the appropriate energy depositions for each process. These are then
combined with the cross sections for the problem to define the macroscopic total energy
deposition in MeV/cm for each material in the problem. During particle tracking TART95
uses these macroscopic total energy depositions in combination with particle track lengths
between collisions to estimate expected energy deposition.

Multi-Group vs. Multi-Band Cross Sections

For neutron transport TART95 uses 175 multi-group cross sections; see table 1 in the
appendix for a list of the energy boundaries of the 175 groups. When generating multi-
group cross sections we must assume some approximation for the energy dependent flux,
or weighting, within each group. Usually this will involves the product of two terms: an
energy dependent spectrum, e.g., Maxwellian, 1/E, fission, fusion spectra at successively
higher energies, and a self-shielding factor, e.g., 1/sigtot.

Using 175 groups, all of which are fairly narrow, the results are fairly insensitive to the
energy dependent spectrum used. For use with TART95 the standard libraries include a
"flat", or constant, spectrum, and a second library using a Maxwellian, 1/E, fission, fusion
spectrum at successively higher energies.

In normal multi-group calculations selecting one general purpose self-shielding factor to
use in general purpose libraries, such as those used by TART95, is a difficult problem.
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Depending on the choice we can try to conserve reaction rates, by using "no", or a unity
self-shielding factor, or distance to collision, by using 1/sigtot, which is proportional to the
distance to collision in a pure material, or we could use 1/[sigtot + sig0], which is the
Bonderenko approximation to the distance to collision in a mixture of materials (here sig0
approximates the contribution of all "other" materials in the mixture). In the case of
TARTNP, which was originally designed for high energy applications where self-shielding
is not as important an effect as at lower energies, it was decided that the standard multi-
group library would be unshielded, i.e., the multi-group constants are simple integrals of
the cross section averaged over each group and self-shielding effects are ignored. In order
to extend TARTNP for use in lower energy applications the multi-band method is used to
handle self-shielding effects.

In the multi-band approach [26-31] we can dynamically account for self-shielding effects
in calculations. Unlike the multi-group method where we can only try to conserve one
quantity of interest, e.g., reactions or distance to collision (but not both), in the multi-band
approach we can simultaneously conserve a number of quantities of interest. We are not
going to go into detail here, see [31], but basically rather than use one total cross section
in each group, the multi-band method uses several totals in each group where each total
represents the effect of different total cross section ranges. As such the approach is similar
to the Probability Table Method [31], which also divides the overall variation of the total
cross section in some energy range into a number of total cross section ranges. However,
the multi-band method is different in the sense that while the Probability Table Method
doesn't explicitly conserve anything the multi-band method directly conserves
simultaneously reaction rates and distance to collision. It also differs in that the Probability
Table Method is only used in the unresolved resonance region, whereas the multi-band
method is used at all energies. As such the multi-band method is much more directly
related to the Subgroup Method [31], which also directly conserves quantities and can be
used at all energies. The multi-band method differs from the Subgroup Method mostly in
terms of what quantities are conserved and how it is applied in Monte Carlo calculations.
The Subgroup Method has a problem in maintaining the correlation between the cross
sections for the same material in different zones that a neutron may pass through during
transport, which can lead to an unreasonable number of equations that have to be solved.
In the multi-band method this problem is completely avoided by, after each event,
sampling cross sections for all the materials in the problem, and consistently using only
these sampled cross sections to transport the neutron through any number of zones until
the next event occurs; thereby exactly correlating the cross sections for the same material
in all zones (again, for details see [31]).

In analog Monte Carlo calculations using multi-group cross sections our basic problem is
how to transport from one space point A where a neutron has had a collision to the next
space point B where it will have its next collision. In terms of considering results
integrated over some energy range (one of the groups) this problem is completely
analogous to the problem of calculating the uncollided transmission through a material
starting from neutrons distributed within a given energy range. If each experimental energy
range corresponds to one of the multi-groups normal multi-group calculations would
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predict that the neutrons will be exponentially attenuated through the material (we would
obtain a straight line result on a semi-log plot of distance through the material versus
uncollided transmission). In fact experiment results using materials that have resonance
structure show a typical self-shielding curve, with a rapid decrease in uncollided
transmission for small material thicknesses, and a slower decrease for thicker materials.
This merely indicates that for small material thicknesses the neutrons interact with the high
cross sections near the peaks of the resonances and are rapidly attenuated. For larger
thicknesses all of the neutrons that were near the peaks of the resonances have been
removed and only those neutrons interacting with smaller cross sections between the
resonances remain and these are attenuated much more slowly as the material thickness
increases.

The most important point to understand is that the self-shielding curves that result from
experiments indicate that a single multi-group cross section cannot be used to reproduce
these results. It doesn't matter whether you use shielded or unshielded cross sections; one
single cross section cannot reproduce a self-shielding curve. A single multi-group cross
section predicts simple exponential attenuation based on this constant cross section. With
unshielded or shielded cross sections you will have different exponential attenuation, but in
each case you will have simple exponential attenuation.  In contrast, the self-shielding
curves indicate that the effective multi-group cross section is decreasing as the neutrons
transport further and further into the material. What the multi-band method does is
simulate these self-shielding curves by using more than one total cross section in each
group. Although experimentally measured self-shielding curves cannot be produced using
only one cross section that results in simple exponential attenuation, it can be reproduced
using several different cross sections each of which will result in a different simple
exponential attenuation, but the sum of which agrees with measured self-shielding curves.
When averaged over the sum of exponentials to define an equivalent single multi-group
cross section the multi-band approach is equivalent to using a continuously and smoothly
varying total cross section as a function of the distance transported by the neutrons, which
is what we want to simulate experimental measurements, or more to the point as it applies
to TART95, simply going from point A to point B between collisions in the Monte Carlo
calculation.

Basically the multi-band method uses the analytical results of certain limiting transport
situations to guarantee that when we encounter these limiting situations our solution
reduces to the correct limit. Fortunately there aren't that many limiting situations that we
have to worry about (once described as meaning that "Nature is user friendly") and we can
end up with multi-band cross sections that can be used in general. What limiting cases
should we consider? For cases where a material is optically thin (thin in terms of mean free
paths) what a distribution of neutrons over an energy interval will interact with is the
unshielded cross section (just in terms of cause and effect, at the point where neutrons are
incident on a material or have not yet transported any distance, they haven't "seen" the
material yet, so that the flux cannot be self-shielded). For optically thick material the cross
section that the neutrons "see" when averaged over its path length through many mean
free paths corresponds to the 1/sigtot weighted cross section, or equivalently averaged
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using the distance to collision as a weighting factor. Similarly if we consider the results of
transport theory, in optically thick media the narrow resonance approximation predicts
that 1/sigtot weighting should be used; yet another limiting case to consider. Other
intermediate cases can be based on the narrow resonance approximation where the
Bonderenko self-shielding model predicts a weighting of 1/[sigtot + sig0], where sigtot is
the cross section of one material and sig0 is an energy independent approximation used to
represent the effect of other materials in a mixture. Sig0 can vary from infinity, which
reproduces unshielded results, to zero, which produces totally shielded 1/sigtot weighted
results. Note, although uncollided transmission measurements and the narrow resonance
and Bonderenko approximations correspond to completely different physical situations,
both predict fluxes with a self-shielded form 1/[sigtot + sig0]. Therefore if we can produce
fluxes of this form we can simultaneously conserve all of these cases and force our Monte
Carlo to rapidly converge to the correct limits.

The multi-band method assumes that we have pre-calculated multi-group cross sections
using a number of different self-shielding models. Starting from these pre-calculated
results it then defines multi-band parameters to exactly conserve these pre-calculated
results, that when used in applications will exactly reproduce a set of limiting cases. For
example, program GROUPIE [34] can be used to calculate unshielded cross sections, and
self-shielded cross sections for 23 values of sig0 using the Bonderenko 1/[sigtot + sig0]
weighting, as well as results using [1/sigtot]2 and [1/sigtot]3 weighting. In order to
physically understand the significance of this weighting by higher powers of the reciprocal
of the total cross section, remember that 1/sigtot is proportional to the distance to
collision, so that reciprocal weighting by higher reciprocal powers of the total cross
section is equivalent to weighting by powers of the distance to collision. For example, if
we choose to conserve the results using 1/sigtot and [1/sigtot]2 weighting, this is
equivalent to conserving the first two moments of the distance to collision, which
obviously conserves the distance to collision, but used in combination these two moments
will also conserve the variance of the distribution of distances to collision.

One possible approach is to conserve the unshielded, 1/sigtot, and [1/sigtot]2, weighted
cross sections. The option in GROUPIE [34] is still available to conserve these three
moments of the cross section ( using 0, 1, and 2, reciprocal powers of the total cross
section as weighting). However, experience over the last twenty years indicates that a
much better approach is to conserve the 0 and 1 reciprocal powers of the total cross
section, but rather than conserving the [1/sigtot]2 weighted cross sections, we conserve
the cross sections using a weight of 1/[sigtot + sig0], where sig0 is defined to be the
unshielded total average cross section in each group for each material. Compared to
conserving the [1/sigtot]2 weighted cross sections, conserving the 1/[sigtot + sig0]
weighted cross sections produces much better results when mixtures of materials are used
in problems. This is the GROUPIE [34] option that has now been used for many years to
produce the multi-band parameters used by TARTNP.

For the details of the following see [31]. Consider the case where we have pre-calculated
multi-group cross sections using three different self-shielding weights: <sig0>, using no
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cross sections weighting, <sig1>, using a cross section weight 1/sigtot, and <sig2>, using
1/[sigtot + sig0], for some value of sig0. In general the multi-band method replaces the
integral over a group by a quadrature, a sum of contributions from each cross section
range. So that the standard definition of a group averaged cross section,

<sigtot> = Reactions/Flux

is reduced to the quadrature,

= sum[i = 1 to N] Fluxi sigtoti / sum[i = 1 to N] Fluxi

Where the flux in each cross section band is a product of the probability of the cross
section occurring, Pi, and a self-shielding factor, e.g., constant, 1/sigtoti, etc.,   

<sigtot> = sum[i = 1 to N] Pi SSFi sigtoti / sum[i = 1 to N] Pi SSFi

where SSFi is the self-shielding factor for band i. We assume that we have pre-calculated
multi-group cross sections using a variety of self-shielding factors, so that we know
<sigtot> and the form of SSFi (the assumed self-shielding factor), and we solve the
equations for the unknown cross section probability, Pi, and band cross section, sigtoti.
The three forms that we assume for the self-shielding factor are,

SSFi = 1
= 1/sigtot
= 1/(sigtot + sig0)

and we will define sig0 to be equal to the unshielded cross section in each group, for each
material.

We can conserve all three of these moments using only two cross section bands. Each
band will have a cross section probability, or weight, and a cross sections. Therefore, for
two bands we have four free parameters: two probabilities and two cross sections. Since
the cross section must have some value the sum of the probabilities must be unity.
Therefore substituting the assumed form for the self-shielding factor, SSFi, in the above
equation, our four equations in four unknowns are,

1 = P1 + P2 (the sum of the probabilities)
<sig0> = P1 sig1 + P2 sig2 (the unshielded total cross section)
<sig1> = 1/[P1/sig1 + P2/sig2] (1/sigtot weighted)

   [P1 sig1/(sig1 + sig0)+ P2 sig2/(sig2 +sig0)]
<sig2> = ______________________________________ (1/(sigtot + sig0) weight)

   [P1/(sig1 + sig0) + P2/(sig2 + sig0)]

These four simultaneous equations are solved analytically (see [31]) to define the two
band parameters: P1, sig1, P2, and sig2, and these parameters are used in TART95.
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Following each collision that a neutron undergoes for each material in a problem the cross
sections that the neutron will "see" in transporting to its next collision site are sampled
from the multi-band parameters in accordance with the probability of each of the cross
sections bands, i.e., select band one with probability P1 and band two with probability P2.
It's as simple as that.

Why does this work? All we are doing is insuring that in optically thin media, where the
flux is unshielded, our calculated multi-band flux will also be unshielded and we will
conserve (re-produce) the correct unshielded cross section. Similarly in thick media we
insure that our multi-band flux is 1/sigtot weighted and we conserve the 1/sigtot weighted
cross section, or distance to collision. At the same time when we have a large amount of
pure material the cross section will self-shield by 1/sigtot, and in a mixture by 1/[sigtot +
sig0], and in the infinitely dilute limit there will be no self-shielding. For example, consider
the analog Monte Carlo equivalent to an uncollided transmission measurement. In this
case, for any thicknesses of material, X, each of the two bands will be exponentially
attenuated through the material, and starting from a sampled flux in each of the two bands
of P1 and P2, respectively, we have,

Flux = P1 Exp(-sigtot1 X) + P2 Exp(-sigtot2 X)

Reactions = P1 sigtot1 Exp(-sigtot1 X) + P2 sigtot2 Exp(-sigtot2 X)

<sig(X)> = Reactions/ Flux = equivalent multi-group cross section

Based on the standard definition of a group averaged cross section as the ratio of reactions
to flux, starting from only two constant multi-bands, we obtain a continuously varying
spatially dependent equivalent multi-group cross section.

Note, that at X = 0, all of the exponentials are unity, and our two band equations reduce
to,

Flux = P1  + P2 = 1   

Reactions = P1 sigtot1  + P2 sigtot2

<sig(0)> = Reactions/Flux  =   P1 sigtot1  + P2 sigtot2

which is exactly one of the equations we used to define the two band parameters to
conserve the unshielded cross section, so that we obtain exactly the right answer in this
limit.

In the other extreme of a thick medium, if we integrate over the path length, the integral of
each exponential, Exp(-sigtoti X) is just 1/sigtoti, and the path length averages are,     

Flux = P1 / sigtot1  + P2 / sigtot2
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Reactions = P1 sigtot1 / sigtot1 + P2 sigtot2 / sigtot2 = P1 + P2 = 1

<sig(X)> = Reactions/ Flux = 1/[P1 / sigtot1  + P2 / sigtot2]

which is exactly one of the equations we used to define the two band parameters to
conserve the shielded cross section or distance to collision, so that we obtain exactly the
right answer in this limit.

Conserving the additional moment using a self-shielding factor 1/[sigtot + sig0], where
sig0 is equal to the unshielded cross section, will force agreement with the self-shielding
for a thickness, X, of about one mean free path. The net effect of conserving these three
moments is to force agreement between the experimentally measured self-shielding curve
and a two band analog Monte Carlo calculation.

That's the analogy to an uncollided transmission measurement. As it applies to an analog
Monte Carlo calculation and the problem of transporting a neutron from point A, where it
has had one collision, to point B, where it will have its next collision, this means that the
sum of two bands will force the neutrons to interact according to the unshielded cross
section near point A, and as the neutron transports further the effective equivalent multi-
group cross section will decrease such that the average distance to collision is conserved,
as will the value about one mean free path from A. Again, the overall effect is to produce
the correct effective, equivalent multi-group cross section that is spatially dependent.

Later in an example criticality problem involving mixtures of uranium and water in various
atom ratios we will see that the effect of conserving these moments produces the expected
narrow resonance and Bonderenko approximation effects. When we have large ratios of
water to uranium we produce the expected unshielded results and when we have small
ratios we produce the expected self-shielded results.

TART95 uses two band cross sections over the entire energy range. Why only two bands?
When the method was initially implemented in TARTNP some twenty years ago we tried
up to five bands. After extensive testing the conclusion was that we couldn't see any
integral effects using more than two bands. Still wouldn't it be better to use more bands
anyway? We must remember that we are using the narrow resonance and Bonderenko
APPROXIMATIONS - these are only approximations and using more bands would only
yield results that better approximate an APPROXIMATION, not necessarily reality. Our
earlier extensive testing indicated that it wasn't worth it to use more than two bands and
that's all that TARTNP has used ever since then.

What about the validity of using the narrow resonance approximation over the entire
energy range; what about the wide resonances that are considered in reactor theory? In
general yes, this would be invalid, however with the 175 groups used by TART95 this isn't
a problem, since wide resonances are resolved into different groups, so that we do not end
up averaging over them and having them disappear within individual groups. Warning -
while this works with the 175 groups used by TART95, this is not generally true for codes
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that use a small number of groups. For a small number of groups the wide resonance
effects should be included, which can be done using the multi-band method [28].

The user might ask: Why does TART95 use multi-group cross sections and multi-band
parameters? Everybody else seems to be using continuous energy cross sections. Isn't this
better? Won't continuous energy cross sections give better answers? The answer is, yes,
continuous energy cross sections will give better answers, if you run your calculations
forever, e.g., when your calculation involves materials that have strong, narrow
resonances you have to run many, many samples to reach convergence to the correct
expected average cross sections. If you want the answers accurately and fast the TART95
approach is more practical and more efficient to use.

If you want to compare the two approaches consider a material like U238, that has many
very narrow resonances. Let's use ENDF/B-VI data and consider a fairly narrow energy
range corresponding to only one of TART95's groups from 5.763 to 7.527 keV. In this
range the U238 capture cross section has many narrow resonances and varies over about
three to four orders of magnitude. We can first use GROUPIE [34] to define the average
capture cross section for this energy interval. We can then see what a Monte Carlo code
using continuous energy cross sections would do to simulate transport. Randomly select
an energy in this range and record the capture cross section sampled. Keep sampling and
dividing by the number of samples to define an averaged sampled capture cross section.
By comparing the results to the correct average defined by GROUPIE you will find that
you need to sample thousands, if not hundreds of thousands of times, to obtain even a
decent approximation of the correct average capture cross section. In contrast, using
simple two band parameters, statistically after only two samples we will have the correct
average capture cross section. That's why TART95 calculations converge so much faster.

Potentially, using continuous energy cross sections is better than using multi-groups and
multi-band parameters, since this starts closer to the original evaluated data without
introducing any approximations. But in most applications the results simply aren't that
sensitive to what happens in one of many resonances, and it becomes too expensive to
calculate long enough to insure convergence to the correct equivalent cross section
averaged over many resonances  (note, with all the fancy checks for convergence that
Monte Carlo codes do, to our knowledge nobody ever checks for convergence to the
correct, expected average cross sections). Using continuous energy cross sections is very
nice and potentially more accurate, but it completely ignores everything that we know
from reactor theory about the limiting values when self-shielding is involved. In contrast
TART95 combines the original evaluations and what we know from reactor theory to go
directly to the heart of the matter and explicitly conserve the physical observables that we
are interested in, such as flux, reaction rates, and average cross sections.

This approach is one of the reasons that TART95 can run to convergence so much faster
than other Monte Carlo codes, and it is all automatic; the user doesn't have to be an expert
in variance reduction, or even understand in detail everything that has been said here about
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the multi-band method. All the user has to do is by input tell TART95 to use the multi-
band method (sentl 20 1),  (highly recommended) and that's it.

Kinematics

Interpolation

TART95 is designed to use the Livermore ENDL neutron interaction data and neutron
induced photon production data, as well as the Livermore EGDL photon interaction data.
As such in order to be completely consistent with the Livermore ENDL and EGDL
conventions to linearly interpolate between tabulated values, TART95 also linearly
interpolates between tabulated values. When using any other source of data, e.g.,
ENDF/B-VI, it is first converted to linear interpolable form before it is processed for use
by TART95.

For neutron interaction cross sections TART95 uses multi-group cross sections, so that no
interpolation in energy is required. For photon interaction cross sections TART95 uses
176 tabulated energy points between 100 eV and 30 MeV, and linearly interpolates
between tabulated values.

The main place that TART95 uses interpolation is in sampling energy and angular
distributions after a collision has occurred. Starting from ALL of the incident neutron and
photon energies in ENDL and EGDL where distributions are tabulated, the distribution at
EACH incident energy is exactly normalized to unity and divided into equally probable
bins for sampling. In principle the data used by TART95 can be divided into any number
of equally probable bins. In practice a standard number of bins have been used for many
years for each type of data. The number of bins used has been defined to insure that the
uncertainty introduced by binning the data is small, or at least comparable, to the
uncertainty in energy and angular distributions. Based on the uncertainty in energy and
angular distributions 32 equally probable bins are used for most distributions. The
exception is for fission spectra, that due to their importance are binned using 1024 equally
probable bins.

Each distribution is defined at a series of incident neutron or photon energies, spanning the
entire energy range for each process, e.g., for neutron elastic scattering angular
distributions are defined over the entire energy range, whereas for neutron inelastic
scattering from a specific level, angular distributions are defined from the threshold of the
level up to the maximum energy. At each incident energy any probability distribution,
p(X), is defined by a table of equally probable values of X, i.e., X1, X2, X3,......XJmax+1,
where for Jmax equally probable intervals we need Jmax + 1 ends of the intervals to define
the entire distribution.

To sample any distribution TART95 first uses the incident neutron or photon energy to
define the energy interval to interpolate within. For example, if the elastic scattering
angular distributions are tabulated at a series of energies, E1, E2, E3,....En, TART95 first
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determines that based on the incident neutron energy, E, this energy is in the interval
between E2 and E3. TART95 next uses a random number, R1, to randomly select a bin, J,
between the first and maximum number of equally probable bins, Jmax,

J = Jmax R1 + 1

and a second random number, R2, to linearly interpolate within the selected bin. Using the
same selected bin, J, and random number, R2, the linear interpolation within the selected
bin is performed at both ends of the tabulated incident energy interval. For example, if the
incident neutron energy, E, is between the energies E2 and E3 where the distributions are
tabulated, TART95 defines interpolated results within bin, J, at both E2 and E3,

X2  =  X2,J + R2 (X2,J+1  - X2,J)

X3  =  X3,J + R2 (X3,J+1  - X3,J)

to define the interpolated values X2 and X3, at energies E2 and E3, respectively.

Note, this sampling method treats each distribution as a histogram within each equally
probable bin; it does not assume that the probability distribution. p(X), is linearly
interpolable, but rather that the integral of, p(X), is linearly interpolable, which is
equivalent to assuming the probability distribution, p(X), is constant within each equally
probable bin.

Finally TART95 linearly interpolates in incident energy, E, between the interpolated values
X2 and X3 at energies E2 and E3, to define the final sampled value X,

X   = X2  + (E  -  E2) (X3  -  X2)/(E3  -  E2)

In this example the sampled values, X, could be scattering cosines for tabulated angular
distributions, or a secondary energy for tabulated neutron spectra.

In most cases only this simple method of interpolation is required to define the final state
of the incident neutron or photon after a collision. For example, for elastic or inelastic
scattering from a discrete level, sampling the scattering cosine uniquely defines the
completely correlated secondary energies. In other cases the scattering cosine and
secondary energy are treated as uncorrelated and each is sampled independently using the
method described above.

However, in the case of completely correlated energy-angular distributions a second level
of interpolation is required. For this type of data at each incident energy the distribution is
represented first by a series of equally probable cosines, and at each equally probable
cosine a normalized spectrum is defined by a series of equally probable secondary
energies. Note, for simplicity of sampling the entire distribution integrated over energy and
angle is not normalized to unity. Rather the distribution is normalized by integrating over
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cosine to define equally probable scattering cosines. The secondary energy spectrum at
each equally probable cosine is then independently normalized to unity for efficiency of
sampling. Sampling this type of data involves first sampling a cosine using the method
described above, and once a cosine has been sampled then sampling the secondary energy
from the normalized spectrum at the previously sampled cosine.

The definition of how to normalize this type of distribution makes the sampling
particularly simple, since in this case we can first sample a cosine by the method described
above using a distribution that is normalized to unity when interpolated over cosine. For
the sampled cosine interval we can then sample from the spectra that are also normalized
to unity at each equally probable cosine. Final we can then interpolate in cosine to sample
a secondary energy. For example, if again the incident energy, E, is between the energies
E2 and E3 where the distribution is tabulated, we can sample the cosine using,

J = Jmax R1 + 1; Jmax is the number of equally probable cosine bins

Cos2  =  Cos2,J + R2 (Cos2,J+1  - Cos2,J)

Cos3  =  Cos3,J + R2 (Cos3,J+1  - Cos3,J)

Cos   = Cos2  + (E  -  E2) (Cos3  -  Cos2)/(E3  -  E2)

Since the secondary energy spectrum at each equally probable cosine is independently
normalized we can next sample the spectra at Cos2 and Cos3,

K  = Kmax R3 + 1; Kmax is the number of equally probable secondary energy bins

E'2  =  E'2,K + R4 (E'2,K+1  - E'2,K)

E'3  =  E'3,K + R4 (E'3,K+1  - E'3,K)

Finally interpolate in cosine to the previously selected Cos, to define the sampled
secondary energy, E'.

E'   = E'2  + (Cos  -  Cos2) (E'3  -  E'2)/(Cos3  -  Cos2)

Neutron Interactions

For tracking neutrons TART95 primarily uses speed, V, rather than energy, E. This is
because since TART95 is a time dependent code it needs the speed to define the time scale
in which events are happening. In addition many of the kinematic relationships can be
more efficiently expressed in terms of speed. Therefore in the following discussion the
methods will be described in terms of sampling speeds and/or energies.

Elastic and Inelastic Level Scattering



Chapter 3: Nuclear/Atomic Data

3-14 Chapter 3: Nuclear/Atomic Data

In these cases the scattering angle in the center-of-mass system is completely correlated to
the secondary energy of the neutron after collision. Therefore in these cases TART95 first
samples the angular distribution. Based on the ENDL data the scattering angle is either
sampled from an isotropic distribution, or from an equally probable binned anisotropic
distribution, as described above under the section on interpolation, to define the center of
mass scattering cosine, Cos. It then defines the laboratory secondary energy, E', or
secondary speed, V', and scattering cosine using,

V' =   V [B2 + 2 B Cos  +  1]1/2/[A +1]

CosL = [1 + B Cos]/[B2 + 2 B Cos + 1]1/2

Cos = center-of-mass scattering cosine
CosL = laboratory scattering cosine
V = incident neutron speed
V' = secondary neutron speed
A = atomic weight of target nucleus
B = A (for elastic scattering)

= A [1 - (A+1) EL/(A V2)]1/2 (for inelastic scattering)
EL = inelastic level energy            

Thermal Elastic Scattering

The above model of elastic scattering assumes that the target nuclei are stationary. In
order to treat thermal scattering TART95 using a free gas model, which assumes that the
target nuclei are distributed in an isotropic Maxwellian distribution in the lab frame of
reference. In order to consistently use this model we must discuss both the treatment of
cross sections (to properly define reaction rates and therefore distance to collision) and
kinematics (to properly define the direction and secondary energy of a neutron after it has
undergone an elastic collision).

In order to predict the correct reaction rates the neutron interaction cross sections have
been Doppler broadened using the SIGMA1 method [36] to process the cross sections
read by TART95 for use in calculations. The SIGMA1 method is consistent with the free
gas model in general and does not require any assumption about the angular distribution of
neutrons after collision; an additional assumption concerning the angular distribution will
be introduced when we discuss kinematics below. The standard TART95 neutron
interaction data file, TARTND, has been prepared at room temperature (293 Kelvin).
Additional data files for use with TART95 can be prepared for any temperature above
room temperature.

In order to predict the direction and energy of a neutron after it collides with a moving
nucleus TART95 assumes that this will only occur at relatively low energies where the
angular distribution for elastic scattering is isotropic in the center-of-mass system; the
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assumption of isotropic scattering greatly simplifies the algorithm used. TART95 samples
a target nucleus speed and direction from an isotropic (in the lab) Maxwellian; once these
have been sampled it knows the relative speed and can therefore define the equations in
the center-of-mass system. Since we assume isotropic scattering in the center-of-mass
system the neutron direction after the collision is completely random and uncorrelated to
its initial direction of motion. Therefore TART95 can randomly select new directions, and
finally add in the center-of-mass motion to transform back to the lab system to define the
final neutron direction and energy [see, 35]. The equations are similar to those described
above for elastic scattering off a stationary target, but the actual algorithm used is greatly
simplified since we need not first sample from an equally probable binned distribution; this
is because we assume isotropic scattering in the center-of-mass system.

Warning - in order to consistently use this thermal scattering model it is important that the
Doppler broadened cross sections and kinematic sampling both use exactly the same
temperature for the medium through which the neutrons are transporting. For example,
you will not obtain consistent results if you use cross sections that have been Doppler
broadened to room temperature (293 Kelvin) in a problem in which your TART95 input
parameters specify the temperature to be 2000 Kelvin. If you do this the reaction rate and
distance to collision will be based on the 293 Kelvin cross sections and the thermal
scattering kinematics will be based on the 2000 Kelvin temperature that you specified by
input.

Multiple neutron emission

For (n,2n), (n,3n), etc., where multiple neutrons are emitted secondary direction and
energy are treated as uncorrelated. In this case, based on the emitted neutron multiplicity
[2 for (n,2n), 3 for (n,3n), etc.], each neutron is independently sampled from the given
distributions, e.g., for (n,2n) no attempt is made to correlate the secondary energy or
direction of the two emitted neutrons. Each emitted neutron will have its secondary energy
sampled from an equally probable binned distribution as described above. Based on the
data in TARTND, the direction of each neutron will either be sampled from an isotropic
distribution or from an equally probable binned anisotropic angular distribution.

For fission, which is a special case of multiple neutron emission, TART95 will emit an
integral number of secondary neutrons, i.e., 1, 2, 3, etc. based on the average number of
secondary neutrons emitted per fission, (i.e., based on nu-bar), in a manner that will
statistically reproduce the correct average number of neutrons per fission. As in the case
of other multiple neutron emission processes, each emitted neutron will be independently
sampled from equally probable binned fission spectra and either isotropic or binned equally
probable anisotropic angular distributions. If we know the average  number of neutrons
emitted per fission, nu-bar, TART95 will select a random number, R1, and emit an integral
number of fission neutrons,

I  = nu-bar + R1
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For example if nu-bar is 2.7, using this algorithm statistically 30 % of the time TART95
will emit 2 neutrons and 70 % it will emit 3 neutrons, to statistically re-produce the
correct average of 2.7 neutrons.

Correlated (n,2n)

The user has the input option to specify that (n,2n) spectra should be sampled to correlate
the energy, see sentl 50. If this sentinel is not set by input the emission of (n,2n) neutrons
is as described above. When this sentinel is set the first of the two emitted neutrons is
sampled as described above. Based on the selection of the first neutron energy, the second
neutron energy is sampled from the complementary probability point in the binned energy
spectrum. For example, if the energy distribution is in 32 equally probable bins and we use
random numbers, R1, to select a bin, and R2 to interpolate within the bin, we can define
the sampled energy of the first emitted neutron to be,

J  = 32 R1 + 1

E'2  =  E'2,J + R2 (E'2,J+1 - E'2,J)

E'3  =  E'3,J + R2 (E'3,J+1 - E'2,J)     

E'   = E'2  + (E  -  E2) (E'3  -  E'2)/(E3  -  E2)

The second neutron is then emitted by sampling from the complementary probability point
in the probability distribution which is in bin,

J'  = 33 - J

at the point,

R'2  = 1 - R2

The equations used are the same as those used above for the first neutron, with J and R2
and replaced by J' and R'2.

Compared to uncorrelated (n,2n) sampling, this method will tend to speed sampling
convergence toward the correct average emitted neutron energy.

Whether or not this option is selected the direction of the two emitted neutrons will still be
uncorrelated; this option only tries to correlate emitted energies, not directions.

The Cluster Model

The Cluster Model is another model used to describe correlated (n,2n). This model
assumes that the first emitted neutron is emitted from a discrete inelastic level of the
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compound nucleus. Therefore the treatment of the first emitted neutron is exactly the same
as for the case of inelastic scattering, described above. It is then assumes that the second
emitted neutron moves in the same direction and at the same speed as the recoil nucleus.

Currently this model is only used to model (n,2n) for neutrons incident on deuterium,
where the first neutron is emitted from the 2.23 MeV level of the compound nucleus,
leaving a neutron and proton to recoil at the same speed and in the same direction (at least
initially; they will eventually separate since the distance to the next collision will differ for
neutrons and protons).

As described above for inelastic scattering, for the first emitted neutron the center-of-mass
scattering cosine, Cos, is first sampled, and the laboratory speed and scattering cosine are
defined using,

S =  [B2 + 2 B Cos  +  1]1/2

V' =  V S/[A +1]

CosL = [1 + B Cos]/S

Cos = center-of-mass scattering cosine
CosL = laboratory scattering cosine
V = incident neutron speed
V' = secondary neutron speed
A = atomic weight of target nucleus
B = A [1 - (A+1) EL/(A V2)]1/2
EL = inelastic level energy

The recoil nucleus speed and direction are defined by,

S =  [B2/A2 - 2 B Cos/A  +  1]1/2

V'R =   V S/[A +1]

CosR = [1 - B Cos/A]/S

This is the speed and scattering angle assigned to the second emitted neutron.

Photon Interactions

Starting from the Livermore photon interaction data file, EGDL, the photon interaction
cross sections have been processed into a fixed energy grid form using the same 176
energy points between 100 eV and 30 MeV, for all processes and all elements; see the
appendix for a table of the 176 energy points. TART95 linearly interpolates between
tabulated value to define photon cross on a continuous basis to any given photon energy.
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Coherent Scattering

By definition the photon does not change energy during coherent scattering. The
scattering angle for coherent scattering is defined by the product of Rayleigh scattering
and the coherent form factor,

R(Cos) = C(Z) [Cos2 + 1] = Rayleigh scattering

f(Cos)  = R(Cos) FF2

C(Z)     = is an element (Z) dependent constant
FF       = the coherent form factor
f(Cos)  = the coherent scattering angular distribution

The details of how TART95 samples this distribution are described in the report of
Brown, McIntosh and Terrall [15]. Basically for sampling by TART95 the distribution is
scaled to account for Z (atomic number) dependence and integrated into 64 equally
probable bins. The result is one simple binned integral that is universally applied to all
elements.

Incoherent Scattering

The scattering angle and secondary energy of the photon are defined by the product of the
Klein-Nishina formula and the incoherent scattering function,

   [Cos2 + 1][1 + A x] + [Ax]2
KN(E, Cos) = _______________________ = Klein-Nishina formula

[1 + A x]3

A = photon energy in electron mass units (0.511 MeV)
x = 1 - Cos
A' = A/[1 + Ax] = secondary photon energy

f(Cos)  = KN(E, Cos) SF

SF = the incoherent scattering function
f(Cos) = the incoherent scattering angular distribution

The details of how TART95 samples this distribution are described in the report of
Brown, McIntosh and Terrall [15]. Basically, for sampling by TART95 the distribution is
scaled to account for Z (atomic number) dependence and at 26 incident photon energies it
is integrated into 200 equally probable bins. The result is binned integrals at 26 incident
energies that is universally applied to all elements.
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Pair Production

For each pair production event it is assumed that the electron and positron will slow down
and stop near the point where the pair production event occurred. It is assumes that the
positron will stop and annihilate, producing two 0.511 MeV photons at the point where
the pair production event occurred. Since we assume the positron has stopped, the
direction of the two 0.511 MeV photons is completely random. The direction of one 0.511
MeV photon is randomly selected and the second photon is then directed in the opposite
direction, to conserve momentum.

Photoelectric

Unless the track fluorescence option (sentl 25) is turned on by user input, each
photoelectric event terminates the history and all of the photons energy is deposited.

Fluorescence

If fluorescence x-ray tracking is turned on by user input, TART95 considers K and L shell
fluorescence. It assumes that above the K edge the ratio of cross sections for the shells
remains constant. Similarly above the L3 edge it assumes the ratio of cross sections is
constant. Using this assumption for each photoelectric event where the incident photons
energy is greater than the K edge energy we can statistically define which shell was
ionized, i.e., has a vacancy. Similarly for energies below the K edge, but above the L3
edge, it can statistically define which shell was ionized.

Once it has been statistically determined which shell has a vacancy we can use the
probability of fluorescence for that shell to statistically determine whether or not
fluorescence is emitted. If fluorescence is emitted, we can use the probability of each
individual transition to statistically define which transition occurs. We then emit a photon
with an energy equal to the difference in binding energies for the two subshells involved in
the transition.

In the case where the first, primary, transition described above is a K - L transition (a
radiative transition where an electron moves from the L shell to fill a hole in the K shell)
the result will be a vacancy in the L shell. In this case we will repeat the procedure
described above to statistically emit a second fluorescence x-ray; what is referred to as a
secondary transition.

For each element we have the energy of the photoelectric edges, i.e., the electron binding
energies,

EK - energy of K edge
EL1 - energy of L1 edge
EL2 - energy of L2 edge
EL3 - energy of L3 edge
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EM1 - energy of M1 edge
EM2 - energy of M2 edge
EM3 - energy of M3 edge
EM4 - energy of M4 edge
EM5 - energy of M5 edge

Above the K edge we have,

VKK - probability of K vacancy
VKL - probability of L vacancy
VKM - probability of M vacancy
VKO - probability of Other vacancy
FKK - probability of K shell fluorescence
FKL - probability of L shell fluorescence

Since a vacancy must occur in some shell the sum of the vacancy probabilities is one.

The following primary transitions are considered

K - L3 (K alpha 1)
K - L 2 (K alpha 2)
K - M3 (K beta)
L3 - M5
L2 - M4

for which we have,

PKL3 - probability of K - L3 transition
PKL2 - probability of K - L2 transition
PKM3 - probability of K - M3 transition
PL2M4 - probability of L2 - M4 transition (assumed constant 0.371)
PL3M5 - probability of L3 - M5 transition (assumed constant 0.629)

These probabilities are normalized such that the sum of the probability of K transitions is
one, and the sum of the L transitions is one.

If a K - L transition occurs the result will be a secondary vacancy in the L shell, and the
following secondary transitions are considered,

L3 - M5
L2 - M4

The sampling procedure is as follows,

1) Statistically sample a vacancy in K, L, M or Other shell
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2) If the vacancy is in the K or L shell, statistically sample the probability of fluorescence
3) If fluorescence occurs, statistically select the transition,

     K - L3 - emit a photon with energy EK - EL3
     K - L 2 - emit a photon with energy EK - EL2   
     K - M3 - emit a photon with energy EK - EM3
     L3 - M5 - emit a photon with energy EL3 - EM5
     L2 - M4 - emit a photon with energy EL2 - EM4

4) If fluorescence was emitted due to a K - L3 or K - L2 transition,
     statistically sample the probability of L shell fluorescence
5) If L shell fluorescence occurs, statistically select the transition,

     L3 - M5 - emit a photon with energy EL3 - EM5
     L2 - M4 - emit a photon with energy EL2 - EM4

6) Otherwise, there is no fluorescence

Below the K edge, but above the L edge we have,

VLL - probability of L vacancy
VLM - probability of M vacancy
VLO - probability of Other vacancy
FLL - probability of L shell fluorescence
FLM - probability of M shell fluorescence

The following primary transitions are considered

L3 - M5
L2 - M4

for which we have,

PL2M4 - probability of L2 - M4 transition (assumed constant 0.371)
PL3M5 - probability of L3 - M5 transition (assumed constant 0.629)

These probabilities are normalized such that the sum of the probability of L transitions is
one.

In this case no secondary transitions are considered, i.e., M shell fluorescence is ignored.

The sampling procedure is as follows,

1) Statistically sample a vacancy in L, M or Other shell
2) If the vacancy is in the L shell, statistically sample the probability of



Chapter 3: Nuclear/Atomic Data

3-22 Chapter 3: Nuclear/Atomic Data

     fluorescence
3) If fluorescence occurs, statistically select the transition,

     L3 - M5 - emit a photon with energy EL3 - EM5
     L2 - M4 - emit a photon with energy EL2 - EM4

4) Otherwise, there is no fluorescence

Below the L3 edge fluorescence is ignored.

Neutron Induced Photon Production

For any given material there can be photon production data for any number of neutron
reactions. The data can be directly associated with an individual reaction, e.g., the
emission of a specific photon line following an inelastic scattering from a specific level.
Alternatively it can be associated with a general emission spectrum that experimentally and
theoretically cannot be directly associated with an individual neutron interaction, e.g.,
emission from a continuum of inelastic states, or a cascade of photons from a number of
competing processes.

For any given material there can be a set of photon production data for any number of
neutron reactions. Each set of photon production data has a photon production cross
section associated with it. Following each neutron interaction (regardless of what neutron
interaction was statistically sampled), the probability and number of photons produced
(the photon multiplicity), is defined as the ratio of the photon production cross section for
each set of photon production data to the total neutron interaction cross section.
Following each neutron interaction TART95 samples every single set of photon
production data and allows all to statistically emit photons. Let me again state that this
procedure is as close as possible to what is experimentally measured, reported and is best
known. For example, even following an elastic collision TART95 will allow statistical
emission of photons. This procedure statistically works because the ENDL data has been
designed to insure an exact energy balance to on average conserve the division of energy
between neutrons after each reaction and the photons produced per reaction.

TART95 always emits an integer number of photons. To decide how many photons to
emit TART95 uses the total neutron interaction cross section, sigtot, selects a random
number, R1, and starts with the photon production cross section for the first set of data,
sigpp1, to define,

R1  = sigpp1/sigtot + R1

If R1 is greater than or equal to unity emit a photon from this set of data (as described
below), decrement R1 by one and continue emitting photons from this set of data and
decrementing R1 until R1 is less than unity. When R1 becomes less than unity we proceed
to the next set of photon production data and use its cross section, sigpp2, to define,
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R1  = sigpp2/sigtot + R1

Again we emit photons from this set and decrement R1 until R1 is less than unity. This
cycle continues through ALL of the sets of photon production data, allowing each to
statistically emit photons

Note, in this algorithm we only select one initial random number, R1, and continue to use
the integer remainder of R1 for each successive set of photon production data. Therefore
if we sum over all sets of data statistically the integer number of photons produced is,

N  = sum[k=1 to m] sigppm/sigtot + R1,  m = the number of sets of data

Once we have used the photon production cross section for a given set of data to decide
to emit a photon, we must next sample the distribution of photon energies and directions
for the set; how this is done is described below.

There are four different representations of neutron induced photon production data energy
and direction distributions used by TART95,

1) Energy lines, isotropic
2) Energy lines, anisotropic
3) Energy Continuum, isotropic
4) Energy Continuum, anisotropic

In all cases photon energy and direction are uncorrelated. Therefore sampling of the
angular distribution is performed in exactly the manner described above under the section
on interpolation, and need not be discussed again here. The same is true for energy
continuum. Both angular and energy continuum are binned in 32 equally probable bins and
sampled exactly as described above.

The energy lines are represented as a normalized integral probability distribution, which
allows each line to be sampled according to the weight it contributes to the normalized
integral, and emission is exactly at the energy of each line.

WARNING - Repeating the warning given above - The ENDL neutron interaction and
neutron induced photon production cross sections have been designed to be completely
consistent when used in combination, as have other neutron data libraries. But the user
MUST be aware that to perform consistent coupled neutron-photon transport calculations
if you use any alternative data sets you MUST consistently use both neutron interaction
and photon production data from the same alternative set of data. For example, for
coupled neutron-photon calculations you SHOULD NOT use ENDF/B-VI neutron
interaction data and ENDL neutron induced photon production data.


